L 1 - uniqueness of degenerate elliptic operators

نویسندگان

  • Derek W. Robinson
  • Adam Sikora Sydney
  • A. Sikora
چکیده

Let Ω be an open subset of R with 0 ∈ Ω. Furthermore, let HΩ = − Pd i,j=1 ∂icij∂j be a second-order partial differential operator with domain C ∞ c (Ω) where the coefficients cij ∈ W 1,∞ loc (Ω) are real, cij = cji and the coefficient matrix C = (cij) satisfies bounds 0 < C(x) ≤ c(|x|)I for all x ∈ Ω. If

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrix Techniques and Martingale Problems for Some Degenerate Kolmogorov Equations

We prove the uniqueness of the martingale problem associated to some degenerate operators. The key point is to exploit the strong parallel between the new technique introduced by Bass and Perkins [2] to prove uniqueness of the martingale problem in the framework of non-degenerate elliptic operators and the Mc Kean and Singer [13] parametrix approach to the density expansion that has previously ...

متن کامل

J an 2 00 6 The submartingale problem for a class of degenerate elliptic operators Richard

We consider the degenerate elliptic operator acting on C2 functions on [0,∞)d: Lf(x) = d ∑ i=1 ai(x)x αi i ∂2f ∂xi (x) + d ∑ i=1 bi(x) ∂f ∂xi (x), where the ai are continuous functions that are bounded above and below by positive constants, the bi are bounded and measurable, and the αi ∈ (0, 1). We impose Neumann boundary conditions on the boundary of [0,∞)d. There will not be uniqueness for th...

متن کامل

Degenerate Diffusion Operators Arising in Population Biology

We analyze a class of partial differential equations that arise as"backwards Kolmogorov operators"in infinite population limits of the Wright-Fisher models in population genetics and in mathematical finance. These are degenerate elliptic operators defined on manifolds with corners. The classical example is the Kimura diffusion operator, which acts on functions defined on the simplex in R^n. We ...

متن کامل

Quasilinear Degenerate Evolution Equations in Banach Spaces

The quasilinear degenerate evolution equation of parabolic type d(Mv) dt + L(Mv)v = F (Mv), 0 < t ≤ T considered in a Banach space X is written, putting Mv = u, in the form du dt + A(u)u 3 F (u), 0 < t ≤ T , where A(u) = L(u)M−1 are multivalued linear operators in X for u ∈ K, K being a bounded ball ‖u‖Z < R in another Banach space Z continuously embedded in X. Existence and uniqueness of the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011